Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Understanding and exploiting complex glycan metabolism in the human microbiota

Objective

The human large bowel is colonized by a community of microbes, the microbiota, which has a significant impact on human health and nutrition through the production of short chain fatty acids, and by interactions with the host immune system. The major nutrients available to these organisms are dietary glycans that are not metabolized by mammalian enzymes in the small intestines. Dietary and nutraceutical strategies can, potentially, be deployed to encourage the dominance of beneficial microbes in the microbiota (e.g. those producing health promoting SCFAs such as propionate and butyrate, and bacteria that have an anti-inflammatory impact through its interaction with the human immune system), ensuring that this microbial ecosystem has a positive influence on human health. This approach, however, is greatly restricted by a critical lack of understanding of the mechanisms by which complex glycans are metabolized by the microbiota. Significantly, the wealth of genomic and metagenomic microbiota sequence data now available, presents an exciting and unparalleled opportunity to make decisive advances in our understanding of glycan metabolism in the human large bowel. This project seeks to capitalize on this genomic information, in harness with recent functional data from my lab., to understand the mechanisms by which complex glycans are metabolized by the human microbiota. At a generic level, by providing insight into glycan resource allocation in the microbiota, this ERC advanced fellowship will make a significant contribution to protein evolutionary biology. The microbiota represents a highly concentrated reservoir of microbes that is continuously exposed to an extensive repertoire of diverse and highly complex glycans, the metabolism of which is essential for bacterial survival.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120314
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITY OF NEWCASTLE UPON TYNE
EU contribution
€ 2 155 013,60
Address
KINGS GATE
NE1 7RU Newcastle Upon Tyne
United Kingdom

See on map

Region
North East (England) Northumberland and Tyne and Wear Tyneside
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0