Objective
Nuclear pore complexes (NPCs) are the exclusive gate of entry/exit of macromolecules into and out of the nucleus of living cells. They exhibit a unique selectivity in transport, with respect to size and molecular species: very small molecules can diffuse efficiently through the pore, while larger objects are delayed/blocked unless they are bound to specialized proteins, so called nuclear transport receptors (NTRs). The permeability barrier and its selectivity arise from an assembly of protein domains that are rich in phenylalanine-glycine repeats (FG repeat domains). These domains are natively unfolded and grafted at high density to the NPC channel walls. NTRs can interact with the FG repeat domains, thereby facilitating translocation of NTR-bound cargo.
The supramolecular organization of the nuclear pore permeability barrier and the mechanism behind selective transport remain insufficiently understood. Our goal is to understand the relation between the organizational and dynamic features of FG-nucleoporin assemblies, their physicochemical properties, and the resulting biological functions. Using an approach that combines tailor-made biomimetic in vitro model systems, surface-sensitive in situ analysis techniques, and polymer physics theory, we will quantitatively study these relationships on the supramolecular level, a level that – for this type of assemblies – is hardly accessible with conventional biological and biophysical approaches. The model systems will be well-defined allowing tight control over composition and supramolecular structure. In a second step, we will apply the obtained knowledge and construct a biosynthetic in vitro system that performs active, directed macromolecular transport.
If successful, this highly interdisciplinary project will greatly increase our mechanistic understanding of nuclear transport. It will also enable the development of novel biotechnology such as species-selective molecular separation devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences chemical sciences polymer sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2012-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
20009 San Sebastian
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.