Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

The inherent morphological potential of the actin cortex and the mechanics of shape control during cell division

Objective

The shape of animal cells is primarily determined by the cellular cortex, a cross-linked network of actin and myosin lying directly beneath the plasma membrane. Although it is increasingly clear that the study of cell mechanics is essential to understand cellular morphogenesis, the physical properties of the cortex are poorly understood. Our previous study on the mechanics of cytokinesis identified cortex tension, network turnover and cellular elasticity as key mechanical parameters controlling cell morphology. A physical description coupling cortex mechanics to cellular shape changes indicates that modulation of these three key parameters could be sufficient to induce a variety of morphological behaviors, including symmetric ingression of a contractile ring, cortex oscillations, and even asymmetric cell cleavage. The aim of this proposal is to reveal the intrinsic shape-generating potential of the cortex and to understand how this potential is used and controlled during cell division. To do so, we will first investigate how cortex tension, turnover and cell elasticity are controlled throughout division. We will test our understanding of cell shape mechanics by exploring how perturbing these properties affects the shape of the dividing cell. We will then explore whether cortical contractions can lead to asymmetric cytokinesis by attempting to induce differences in size between daughter cells by mechanical perturbations. Finally, we will use blebs separated from cells as model isolated cortices and investigate the control of shape dynamics in this simplified system. Our interdisciplinary approach will produce an integrated description of the mechanical function of the cortex in cell shape changes. More generally, I expect that this work will unveil some of the fundamental principles of cell morphogenesis by resolving how the coordinated regulation of a single set of physical parameters can unify seemingly disparate cellular morphogenetic events.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITY COLLEGE LONDON
EU contribution
€ 1 500 000,00
Address
GOWER STREET
WC1E 6BT LONDON
United Kingdom

See on map

Region
London Inner London — West Camden and City of London
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0