Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Riding on Moore's Law

Objective

The most common interpretation of Moore's Law is that the number of components on a chip and accordingly the computer performance doubles every two years. At the end of the 20th century, when clock frequencies stagnated at ~3 GHz, and instruction level parallelism reached the phase of diminishing returns, industry turned towards multiprocessors, and thread level parallelism. However, too much of the technological complexity of multicore architectures is exposed to the programmers, leading to a software development nightmare.
We propose a radically new concept of parallel computer architectures, using a higher level of abstraction, Instead of expressing algorithms as a sequence of instruction, we will group instructions into higher-level tasks that will be automatically managed by the architecture, much in the same way superscalar processors managed instruction level parallelism.
We envision a holistic approach where the parallel architecture is partially implemented as a software runtime, and the reminder in hardware. The hardware gains the freedom to deliver performance at the expense of additional complexity, as long as it provides the required support primitives for the runtime software to hide complexity from the programmer. Moreover, it offers a single solution that could solve most of the problems we encounter in the current approaches: handling parallelism, the memory wall, the power wall, and the reliability wall in a wide range of application domains from mobile up to supercomputers .
We will focus our research on a most efficient form of multicore architecture coupled with vector accelerators for exploiting both thread and data level parallelism.
All together, this novel approach toward future parallel architectures is the way to ensure continued performance improvements, getting us out of the technological mess that computers have turned into, once more riding on Moore's Law.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120216
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION
EU contribution
€ 2 356 467,00
Address
CALLE JORDI GIRONA 31
08034 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0