Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Evolutionary origin of multicellularity and the oxygenation of Earth

Objective

The origin of multicellularity is considered a major transition in the evolution of life. It has independently evolved over 20 times in different pro- and eukaryote lineages. Underlying genetic mechanisms are still far from being understood. Moreover, it seems that the transition to multicellularity in cyanobacteria might have be correlated to the “Great Oxidation Event” (GOE), over 2.4 billion years ago. Here, I propose an ambitious multidisciplinary project, (i) to study the genetic mechanism that enabled the transition to multicellularity and (ii) to test the hypothesis that the accumulation of atmospheric oxygen is a consequence of the origin of multicellularity in cyanobacteria. Multicellularity might have been a key innovation during cyanobacterial history triggering adaptive radiation and abundance, consequently changing the biogeochemical cycles of Earth. To test this hypothesis I propose to resolve the timing and nature of cyanobacterial evolution, combining phylogenomic studies with palaeontological data. 30 cyanobacterial species have been chosen for next generation sequencing adding to the full genetic and morphological diversity of this phylum. The resultant data will be used for phylogenomic studies. Distinct gene sets associated with different multicellular lineages will be identified and their history reconstructed using Bayesian and maximum likelihood methods. Furthermore, cyanobacterial fossils from various ages will be analyzed applying different “state-of-the-art” analytical tools, such as Synchrotron X-ray tomography, and will be incorporated in an elaborate phylogenetic dating analyses using a Bayesian approach with different clock models. Results will be critically evaluated and compared to palaeoclimatic data, to reconstruct the origin and diversification of cyanobacteria and their significance to the GOE. This approach depicts the most sophisticated study of the coevolution of Earth and life over two billion years ago.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Call for proposal

FP7-PEOPLE-2012-IEF
See other projects for this call

Coordinator

UNIVERSITY OF BRISTOL
EU contribution
€ 221 606,40
Address
BEACON HOUSE QUEENS ROAD
BS8 1QU Bristol
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data