Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Disordered assemblies of biofilaments: from aggregation to contractility

Objective

Protein filaments and their geometrical organization are crucial for cell mechanics, and their failure is related to diseases ranging from sickle cell anemia to Alzheimer’s to cancer. While such stakes would suggest a well-defined design to the engineer, sub-cellular filamentous structures are often surprisingly disordered, and very variable from one cell to the next. Physically, this disorder can be traced back to complicated random aggregation processes involving particles with intricate structures far from equilibrium. To help understand this paradoxical combination of reliability and randomness in the cell’s architecture, I plan on theoretically characterizing robust, generic organizational principles for biofilaments on multiple, interrelated scales, from the whole cell to individual proteins.

I will first consider disordered assemblies of actin filaments and molecular motors that contract in vivo. These systems self-organize to induce cell motility according to different mechanisms than ordered structures, and I will ask which of these non-conventional mechanisms dominates their activity. This problem crucially involves the mesoscopic structure of the filament assembly, which I will consider next. Going beyond existing naive equilibrium models, this second study will focus on the out-of-equilibrium competition between filament growth and aggregation, which experiments have recently shown to dominate actin gel structure. Finally, I will question the foundations of these two first studies by asking why protein filaments are so abundant; indeed, they form even in situations where their presence harms the cell. To this end, I will show that irregular protein-like particles have a natural tendency towards filament formation, which relieves the geometrical frustration resulting from their ill-fitting shapes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU contribution
€ 100 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0