Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Genetic and Epigenetic Regulation of Stem Cell Fate

Objective

Stem cells play crucial roles in establishing and repairing tissues, yet our knowledge of their properties, how they assure organogenesis and effect regeneration in distinct physiological contexts remains limited. A major challenge in stem cell biology is investigating these cells in their natural state in vivo, and obtaining highly pure and sufficient quantities for characterisation.

Skeletal myogenesis provides an excellent paradigm to investigate stem cell function and regenerative biology because of its accessibility, and its striking ability to regenerate efficiently. Futhermore, the same individual can undergo multiple rounds of muscle injury thereby permitting the long term study of stem cell turnover and homeostasis after inflicted trauma without life threatening consequences or complex surgical procedures.

The objective of this research programme is to identify mouse stem cell properties and understand how they regulate cell fate choice in different contexts by modulating their modes of cell divisions. Specifically, biased DNA segregation, which has been reported in diverse organisms from bacteria to vertebrates and is thus an evolutionary ancient phenomenon, will be investigated. Notably, we developed genetic tools that allow us to isolate prospectively those cells that execute asymmetric vs. symmetric cell divisions during regeneration, and directly linked cell fates with biased DNA segregation. The use of innovative nucleotides, micropatterns to mimic the niche, epigenetic, genetic and single cell transcriptomics strategies comprise a multi-pronged strategy to uncover the underlying mechanisms that govern asymmetric cell fates and biased DNA segregation. This knowledge will be projected to tissuegenesis using complementary clonal lineage tracing and live imaging of cell divisions in vivo. These studies aim to identify the diverse modes of stem cell divisions during tissuegenesis, information that can significantly impact on regenerative medicine.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120314
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

INSTITUT PASTEUR
EU contribution
€ 2 494 400,00
Address
RUE DU DOCTEUR ROUX 25-28
75724 Paris
France

See on map

Region
Ile-de-France Ile-de-France Hauts-de-Seine
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0