Objective
Proteins are highly flexible objects that perform their functions by sampling a wide range of conformations. The characterization of such motions is, therefore, crucial to establish the link between protein structure and function. In this project we will use advanced nuclear magnetic resonance in solution state and solid state to characterize functionally important motions in two challenging classes of proteins.
The first target of these studies will be a large molecular chaperone of close to 1MDa in size. Conformational changes and dynamics are a prerequisite for the function of this assembly, as it binds, encloses and folds unfolded substrate proteins. Atomic-resolution structures of such large objects frozen in their crystal lattice do not provide access to dynamic information nor insight into the folding process itself. Here, we will exploit the complementary advantages of solid- and solution-state NMR spectroscopy to probe the dynamics, allostery and binding in a ≈1MDa object. Furthermore, we will study how the chaperone cage influences folding, by observing in real time and at atomic resolution how substrate proteins achieve their native fold inside and outside this large molecular edifice.
We will furthermore study the mechanism of substrate translocation across membranes by characterizing structure, interactions and dynamics in a solute carrier protein. The dynamics of integral membrane proteins is currently poorly understood. This relates to the need to address membrane protein dynamics in an environment that closely resembles the native membrane. NMR techniques on proteoliposomes as well as nanodiscs are uniquely suited to get insight into native dynamics. We will use such techniques to relate the process of substrate translocation to inherent protein dynamics over a wide range of time scales. The development of novel NMR methods will be an integral part of these studies, and will allow us to probe protein motion at unprecedented detail.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences atomic physics
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-StG_20111109
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
75015 PARIS 15
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.