Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Enabling Technologies for High Power Terahertz Electronic Circuitry

Objective

The Terahertz range (300 GHz – 3 THz) of the electromagnetic spectrum is largely unused for the lack of solid-state Terahertz electronic components. Exciting applications can be found in many areas including Communications, Navigation, Security, Material Engineering, and Medical and Life Sciences, owing to the character of Terahertz electromagnetic radiation. Examples of applications are high-bandwidth (>= 100 Gb/s) wireless communication links for next-generation wireless backhaul, campus and in-building mobile networks and wireless access networks, high-resolution RADAR for autonomous machine and robotic applications, imaging of concealed objects, detection of trace substances such as explosives and toxic gases by Terahertz spectroscopy, material defect imaging and analysis, and subcutaneous and dental imaging. To date, the realization of Solid-State Terahertz Electronic Circuits with significant output power remains an unsolved technological challenge. To reach this goal, faster transistors capable of outputting significant power are needed. Frequency scaling is accomplished by shrinking optimized high-speed transistors to lateral dimensions below 100 nm. Within the proposed four-year program, the goal is to reach transistor gain cut-off frequencies in excess of one Terahertz, and circuit fundamental operating frequencies of 300 to 500 GHz, with useable output power in the range of a few milliwatts. The Ferdinand Braun Institute maintains a research program focused on high-power sub-Terahertz electronics. This research proposal would broaden on-going research efforts, establishing higher frequency InP HBT components, hence opening a new research direction within the Terahertz research field already established at Ferdinand-Braun-Institut. The host institute will provide an excellent work environment to carry out research on Terahertz electronics in terms of collaborative scientific interaction as well as fabrication and measurement instrumentation infrastructure.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

FORSCHUNGSVERBUND BERLIN EV
EU contribution
€ 100 000,00
Address
RUDOWER CHAUSSEE 17
12489 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0