Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Cavitation bubble cloud dynamics and surface erosion in high pressure fuel systems for medium/heavy duty Diesel engines

Objective

The medium/heavy duty Diesel engine industry is facing new challenges for meeting the forthcoming emission regulations. Injection pressure reaching 3000bar combined with multiple injection strategies can drastically reduce the NOx/PM trade-off and allow use of less demanding aftertreatment systems for meeting the set legislations. At the same time, use of commercial Diesel engines is expected to double over the next few decades. Cavitation erosion can affect the durability of the injection system to levels that replacement of mechanical parts only after hours of operation is demanded. The proposed programme will assist in the understanding of such flow effects using thoroughly validated CFD models and assisted by detailed experimental data as well as industrial input. The fundamental process that will be thoroughly investigated is the collapse of cavitation bubble cloud and the erosion it induces on solid surfaces. This expertise has been developed at the outgoing host institution, NTU in Singapore where the applicant will develop and validate a simulation model for such effects. Upon return back to Europe, the numerical model will be implemented into the CFD code of the return host and which simulates the macroscopic cavitating flow development within fuel injection systems. Under the premises of the International Institute of Cavitation Research, the applicant will consider with the new model effects not captured so far but believed to be of imperative importance: the prediction of cavitation surface erosion caused by sudden bubble collapse at pressure up to 3000bar and temperatures reaching locally more than 450oC. This excessive heating is produced during the fast acceleration of the fuel as it flows through the injection holes and can result to flow boiling. Thus, it alters the heat transfer characteristics between the flowing fluid and the metal of the injector. Model validation will be performed against field data from injector’s durability tests.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

CITY ST GEORGES UNIVERSITY OF LONDON
EU contribution
€ 380 554,00
Address
NORTHAMPTON SQUARE
EC1V 0HB LONDON
United Kingdom

See on map

Region
London Inner London — East Haringey and Islington
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0