Objective
The microtubule cytoskeleton provides an intracellular coordinate system and a mechanical scaffold for a multitude of essential cellular functions. The design principles underlying the dynamic organisation and function of the microtubule cytoskeleton are not understood. Using an in vitro reconstitution approach, we will determine the rules that govern which combination of mechano-chemical elements gives rise to specific large-scale organisation of the microtubule cytoskeleton. We will reconstitute the architecture of bipolar spindles that are essential for the segregation of the genetic material during cell division. For the in vitro reconstitutions, we will use candidate proteins suggested to be crucial by the literature and we will identify as yet unknown proteins with critical activities. We will investigate key fundamental questions: In which region of the multidimensional biochemical parameter space is bipolarity encoded, which is essential for successful cell division? What are the molecular mechanisms that determine size scaling of spindles or of spindle substructures? How do chromosomes position themselves correctly within spindles and how are spindles positioned properly within cells? To validate that the answers obtained from our in vitro reconstitutions are also applicable to the cytoskeleton in vivo, the reconstituted systems will be quantitatively compared to living cells at the global and single molecule level. The results of our experiments will develop theoretical models of cytoskeleton architecture and function. The overall goal of the project is to understand at a mechanistic level how the self-organised architecture of the microtubule cytoskeleton, and its collective dynamic and mechanical properties, derive from the complex interplay between its mechano-chemical constituents. This will link the functional properties of a system to the fundamental biochemistry and biophysics of the system’s components.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences biophysics
- natural sciences biological sciences genetics chromosomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-ADG_20120314
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
NW1 1AT London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.