Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Design Principles of Microtubule Cytoskeleton Architectures during Cell Division

Objective

The microtubule cytoskeleton provides an intracellular coordinate system and a mechanical scaffold for a multitude of essential cellular functions. The design principles underlying the dynamic organisation and function of the microtubule cytoskeleton are not understood. Using an in vitro reconstitution approach, we will determine the rules that govern which combination of mechano-chemical elements gives rise to specific large-scale organisation of the microtubule cytoskeleton. We will reconstitute the architecture of bipolar spindles that are essential for the segregation of the genetic material during cell division. For the in vitro reconstitutions, we will use candidate proteins suggested to be crucial by the literature and we will identify as yet unknown proteins with critical activities. We will investigate key fundamental questions: In which region of the multidimensional biochemical parameter space is bipolarity encoded, which is essential for successful cell division? What are the molecular mechanisms that determine size scaling of spindles or of spindle substructures? How do chromosomes position themselves correctly within spindles and how are spindles positioned properly within cells? To validate that the answers obtained from our in vitro reconstitutions are also applicable to the cytoskeleton in vivo, the reconstituted systems will be quantitatively compared to living cells at the global and single molecule level. The results of our experiments will develop theoretical models of cytoskeleton architecture and function. The overall goal of the project is to understand at a mechanistic level how the self-organised architecture of the microtubule cytoskeleton, and its collective dynamic and mechanical properties, derive from the complex interplay between its mechano-chemical constituents. This will link the functional properties of a system to the fundamental biochemistry and biophysics of the system’s components.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120314
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

THE FRANCIS CRICK INSTITUTE LIMITED
EU contribution
€ 2 497 115,00
Address
1 MIDLAND ROAD
NW1 1AT London
United Kingdom

See on map

Region
London Inner London — West Camden and City of London
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0