Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Probing DNA Radiation Damage by DNA Nanotechnology

Objective

In cancer radiation therapy predetermined doses of high-energy radiation are administered to reduce tumours. More than 60 % of the patients diagnosed with cancer are treated with radiation therapy. A detailed understanding of the fundamental mechanisms of DNA radiation damage is of utmost importance with respect to the question of how the damage can be increased by therapeutics used in radiation therapy. On a molecular level a large extent of the cell damage is ascribed to the production of secondary low-energy electrons along the high-energy radiation track that induce DNA single and double strand breaks. The physico-chemical mechanisms of DNA radiation damage can currently only be described for idealized small model systems and it is not known, which DNA nucleotide sequences and higher-order DNA structures are most susceptible to damage. Very recent ground-breaking advances in DNA nanotechnology allow for the first time the detailed study of the interaction of radiation with complex DNA structures. With an innovative DNA origami technique it is possible to map the radiation damage of different DNA target structures with unprecedented efficiency and accuracy. A two-dimensional DNA origami template functionalized with protruding well-defined DNA structures will be exposed to a beam of low-energy electrons. The strand break yield of different nucleotide sequences will be determined as a function of the electron energy using the DNA origami technique combined with atomic force microscopy. Furthermore, the DNA origami technique allows for the study of the influence of an aqueous environment on the DNA strand break yield. The final goal is to identify the DNA target structures that can be most efficiently sensitized to low-energy electrons by radiosensitizers. This fundamental knowledge will have important implications for the development of novel therapeutics and the improvement of radiation cancer therapy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

UNIVERSITAET POTSDAM
EU contribution
€ 100 000,00
Address
AM NEUEN PALAIS 10
14469 Potsdam
Germany

See on map

Region
Brandenburg Brandenburg Potsdam
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0