Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Pattern Recognition in High Dimensional Data

Objective

High dimensional data, where the number of variables is larger than the sample size, are encountered in a wide range of areas such as microarray studies, finance, engineering, biometrics and neuroimaging. This project is on pattern recognition (classification and clustering) of high dimensional data. Statistical methodology (including recognition methods) available for analyzing such data suffers from the curse of dimensionality as the enormous number of variables poses challenges to conventional methods rendering them impractical due to limited amounts of available data. A natural solution is to add a dimension reduction step before the recognition method is employed. In particular, given observations in a high dimensional space, our goal is to find a low dimensional manifold which captures the information relevant to pattern recognition for these data. One approach is writing a probability model which straddles “practically relevant” and “mathematically tractable”; defining an objective function whose arg opt (over manifolds) will act as a useful surrogate for “manifold with the most relevant information”; and finding a good approximation for the arg opt. This procedure must be accomplished in real-time in a dynamic environment to produce, e.g. an “adaptive sensor” adapting its low-dimensional view based on the pattern recognition exploitation function (rather than some far-afield surrogate such as signal-to-noise). In this project various methods are proposed to address the challenges of high-dimensional recognition by focusing on low-dimensional structures that approximate or encapsulate given high dimensional data. The main training objective of this research is to equip a European researcher with expertise about the theory and applications of high dimensional recognition, to become a competent user and trainer of this advanced methodology and to increase its availability in European research.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

KOC UNIVERSITY
EU contribution
€ 233 921,00
Address
RUMELI FENERI YOLU SARIYER
34450 Istanbul
Türkiye

See on map

Region
İstanbul İstanbul İstanbul
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0