Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Ultrafast energy transfer and dissipation in electronically excited materials: calculations from first principles

Objective

"The development of ultrafast experimental techniques with femtosecond time resolution is driving the need for deeper theoretical understanding of how intense optical excitation can alter the interatomic forces, drive atomic motion and effect structural changes in materials. The main objective of this project is to extend the scope of electronic structure computational methods, allowing us to quantitatively simulate (without phenomenological parameters) the coupled electronic and atomic dynamics in highly photoexcited materials on a picosecond and sub-picosecond timescale. We will use these new methods to calculate the transfer of energy from electronic states to the lattice vibrations in photoexcited GaAs and to follow the redistribution of vibrational energy through to its ultimate thermalisation in the lattice. We will compare our predictions of electronic distributions and vibrational motion with those measured by our collaborators, using time-resolved photoemission and x-ray diffraction, allowing us to benchmark the effectiveness of our theoretical approach. The understanding of energy relaxation and transfer following optical excitation underpins a variety of technologically important processes: e.g. the ultrafast response of optically active components in high-speed telecommunications and, in the field of renewable energy, the initial stages of photocatalysis or optical absorption in solar cells. To support advances in these areas, it is important to develop predictive methods for modelling the behaviour of optically excited materials at an atomic level on very short time scales. In delivering these predictive methods and by the virtue of the applicant's expertise in electronic structure theory and the emerging field of ultrafast electron and phonon dynamics, this project will enhance EU scientific excellence and competitiveness."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
EU contribution
€ 183 504,60
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0