Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Molecular organization of the kinetochore-microtubule interface

Objective

This application is concerned with the reconstitution of the outer kinetochore, and its analysis by biophysical techniques and electron microscopy. The kinetochore is a large multi-subunit and multi-copy protein complex that bridges mitotic chromosomes with spindle microtubules. The kinetochore-microtubule interface is crucially important for faithful division of replicated DNA during mitosis and is therefore subtly regulated to perform its functions optimally, maintaining genome stability. Failures in the chromosome segregation process are associated with genetic diseases and cell transformation.

To understand the structural organization of the kinetochore-microtubule interface, a clear overview of the relevant players and their role and position in the kinetochore is needed. The binding of kinetochores to microtubules likely involves cooperative interactions between different copies of the kinetochore components. Several kinetochore proteins are known to bind microtubules, but the main mediator of the ‘end-on’ microtubule interaction is the NDC80 complex. Previous structural work from our laboratory has shed light on the organization of a minimal NDC80 complex and its mechanism of microtubule binding. Building on these previous studies, it is now important to extend the analysis to the function of the entire kinetochore.

To study the binding of the kinetochore to microtubules in more detail, we now propose to reconstitute the full-length NDC80 complex with additional recombinantly expressed kinetochore components, including CENP-C, the MIS12 complex, the SKA complex and the KNL1 complex. The influence of these additional components on microtubule binding will be studied using biophysical approaches and electron microscopy. Through this we will gain insight into 1) the structural basis of kinetochore organization, 2) the conformational changes upon microtubule binding, and 3) the dynamics of relevant interactions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 168 794,40
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0