Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Visual Learning and Inference in Joint Scene Models

Objective

One of the principal difficulties in processing, analyzing, and interpreting digital images is that many attributes of visual scenes relate in complex manners. Despite that, the vast majority of today's top-performing computer vision approaches estimate a particular attribute (e.g. motion, scene segmentation, restored image, object presence, etc.) in isolation; other pertinent attributes are either ignored or crudely pre-computed by ignoring any mutual relation. But since estimating a singular attribute of a visual scene from images is often highly ambiguous, there is substantial potential benefit in estimating several attributes jointly.
The goal of this project is to develop the foundations of modeling, learning and inference in rich, joint representations of visual scenes that naturally encompass several of the pertinent scene attributes. Importantly, this goes beyond combining multiple cues, but rather aims at modeling and inferring multiple scene attributes jointly to take advantage of their interplay and their mutual reinforcement, ultimately working toward a full(er) understanding of visual scenes. While the basic idea of using joint representations of visual scenes has a long history, it has only rarely come to fruition. VISLIM aims to significantly push the current state of the art by developing a more general and versatile toolbox for joint scene modeling that addresses heterogeneous visual representations (discrete and continuous, dense and sparse) as well as a wide range of levels of abstractions (from the pixel level to high-level abstractions). This is expected to lead joint scene models beyond conceptual appeal to practical impact and top-level application performance. No other endeavor in computer vision has attempted to develop a similarly broad foundation for joint scene modeling. In doing so we aim to move closer to image understanding, with significant potential impact in other disciplines of science, technology and humanities.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITAT DARMSTADT
EU contribution
€ 1 374 030,00
Address
KAROLINENPLATZ 5
64289 DARMSTADT
Germany

See on map

Region
Hessen Darmstadt Darmstadt, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0