Objective
The project aims to develop, validate and implement a novel solid-state conversion mechanism able to transform concentrated solar radiation into electric energy, at very high efficiency, with a direct conversion obtained by an enhanced electron emission from advanced semiconductor structures. Its application is in high-flux concentrating solar systems, characterized by presently mature optical technology, reduced request for active components, high cost-effectiveness.
The energy conversion exploits the high radiation flux, provided by solar concentrators, by combining an efficient thermionic emission to an enhanced photo-electron emission from a cathode structure, obtained by tailoring the physical properties of advanced semiconductors able to work at temperatures as high as 1000 °C. The high operating temperatures are also connected to the possibility to exploit the residual thermal energy into electric energy by thermo-mechanical conversion.
ProME3ThE2US2 will develop a proof-of-concept converter working under vacuum conditions, composed of an absorber able to employ the solar infrared (IR) radiation to provide a temperature increase, a semiconductor cathode properly deposited on it, and a work-function-matched anode, separated from the cathode by an inter-electrode spacing. The concept novelty bases on (1) use of both bandgap and over-bandgap energy to generate electrical current; (2) additional use of sub-bandgap IR radiation, with a spectral energy not able to excite photo-emitters, for augmenting the thermionic emission from cathode, (3) engineered semiconductors, able to emit electrons at lower temperatures than standard refractory metals; (4) experimentation of a hetero-structured cathode for emission enhancement by an internal field; (5) recovery of exhaust heat from the anode by thermo-mechanical conversion. It is estimated that the proposed technology could achieve a conversion efficiency of 45% if used under high-flux irradiation conditions (~1000 suns).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering electric energy
- natural sciences earth and related environmental sciences atmospheric sciences meteorology solar radiation
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ENERGY-2012-1-2STAGE
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.