Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Non Equilibrium Dynamics and Relaxation in Many Body Quantum Systems

Objective

Relaxation processes in many-body quantum systems arise in many diverse areas of physics ranging from inflation in the early universe to the emergence of classical properties in complex quantum systems. Ultracold atoms provide a unique opportunity for studying non-equilibrium quantum systems in the laboratory. The coherent quantum evolution can be observed on experimentally accessible timescales and the tunability in interaction, temperature and dimensionality allows the realization of a multitude of different relevant physical situations.

Through building specific model systems we propose to study a wide variety of non-equilibrium quantum dynamics under conditions ranging from weakly interacting to strongly correlated, from weakly disturbed to quantum turbulent and search for universal properties in non-equilibrium quantum evolution.

We address questions of de-coherence in a split many-body system and the concomitant emergence of classical properties. We will study the fate of the highly entangled quantum states that are created when a system in its excited state decays. Systems with instabilities and controlled quenches will give us insight into the creation of defects and excitations. We will experiment with bosons, fermions and mixtures, and take advantage of the rich internal structure of the atoms. Our systems will also be observed when interacting with ‘baths’, which can be internal or external with controlled coupling and can be engineered from simple thermal to squeezed, from large to mesoscopic with non-Markovian properties.

Our ultimate goal is insight into the answers to fundamental questions: What does it take for an isolated many-body quantum system with a set of conserved quantities to relax to an equilibrium state? Which universal properties and scaling laws govern its evolution? Can classical physics and thermodynamics emerge from quantum physics through the dynamics of complex many-body systems?

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120216
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

TECHNISCHE UNIVERSITAET WIEN
EU contribution
€ 2 025 400,00
Address
KARLSPLATZ 13
1040 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0