Objective
The last few years have seen a growing interest for computational cell mechanics. This field encompasses different scales ranging from individual monomers, cytoskeleton constituents, up to the full cell. Its focus, fueled by the development of interdisciplinary collaborative efforts between engineering, computer science and biology, until recently relatively isolated, has allowed for important breakthroughs in biomedicine, bioengineering or even neurology. However, the natural “knowledge barrier” between fields often leads to the use of one numerical tool for one bioengineering application with a limited understanding of either the tool or the field of application itself. Few groups, to date, have the knowledge and expertise to properly avoid both pits. Within the computational mechanics realm, new methods aim at bridging scale and modeling techniques ranging from density functional theory up to continuum modeling on very large scale parallel supercomputers. To the best of the knowledge of the author, a thorough and comprehensive research campaign aiming at bridging scales from proteins to the cell level while including its interaction with its surrounding media/stimulus is yet to be done. Among all cells, neurons are at the heart of tremendous medical challenges (TBI, Alzheimer, etc.). In nearly all of these challenges, the intrinsic coupling between mechanical and chemical mechanisms in neuron is of drastic relevance. I thus propose here the development of a neuron model constituted of length-scale dedicated numerical techniques, adequately bridged together. As an illustration of its usability, the model will be used for two specific applications: neurite growth and electrical-chemical-mechanical coupling in neurons. This multiscale computational framework will ultimately be made available to the bio- medical community to enhance their knowledge on neuron deformation, growth, electrosignaling and thus, Alzheimer’s disease, cancer or TBI.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine neurology dementia alzheimer
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences computer and information sciences
- medical and health sciences clinical medicine oncology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-StG_20111012
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.