Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Computational Multiscale Neuron Mechanics

Objective

The last few years have seen a growing interest for computational cell mechanics. This field encompasses different scales ranging from individual monomers, cytoskeleton constituents, up to the full cell. Its focus, fueled by the development of interdisciplinary collaborative efforts between engineering, computer science and biology, until recently relatively isolated, has allowed for important breakthroughs in biomedicine, bioengineering or even neurology. However, the natural “knowledge barrier” between fields often leads to the use of one numerical tool for one bioengineering application with a limited understanding of either the tool or the field of application itself. Few groups, to date, have the knowledge and expertise to properly avoid both pits. Within the computational mechanics realm, new methods aim at bridging scale and modeling techniques ranging from density functional theory up to continuum modeling on very large scale parallel supercomputers. To the best of the knowledge of the author, a thorough and comprehensive research campaign aiming at bridging scales from proteins to the cell level while including its interaction with its surrounding media/stimulus is yet to be done. Among all cells, neurons are at the heart of tremendous medical challenges (TBI, Alzheimer, etc.). In nearly all of these challenges, the intrinsic coupling between mechanical and chemical mechanisms in neuron is of drastic relevance. I thus propose here the development of a neuron model constituted of length-scale dedicated numerical techniques, adequately bridged together. As an illustration of its usability, the model will be used for two specific applications: neurite growth and electrical-chemical-mechanical coupling in neurons. This multiscale computational framework will ultimately be made available to the bio- medical community to enhance their knowledge on neuron deformation, growth, electrosignaling and thus, Alzheimer’s disease, cancer or TBI.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 1 128 960,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0