Skip to main content
An official website of the European UnionAn official EU website
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Determining the Impact of Seawater Chemistry on the Solubility of Atmospheric Trace metals

Objective

Bioactive trace metal (TM) distributions in the ocean impact directly on the growth and sustainability of micro-organisms and on the marine biogeochemical cycles of bulk elements that sustain life, such as carbon, nitrogen, phosphorus and sulphur. A primary delivery mechanism of TMs to the modern surface ocean is via atmospheric transport and deposition in aerosols and precipitation. An important linkage between the deposition of TMs and their impact on the biology of the upper ocean, lies in the proportion of TMs in aerosols that dissolve and becomes available to biota. Critical physico-chemical variables in seawater have the potential to affect TM dissolution (i.e. temperature, pH, dissolved oxygen and metal binding ligands) and there is a requirement to investigate their effects to better constrain global biogeochemical models. These physico-chemical variables are known to vary considerably between different geographically regions in the current upper ocean. Furthermore, their spatial variability is predicted to be substantially altered in the next few centuries due to global change. The DISCOSAT (Determining the Impact of Seawater Chemistry On the Solubility of Atmospheric Trace metals) project will test the extent to which changes to the physico-chemical composition of surface seawater (within environmentally relevant ranges) have a significant impact on the dissolution of TMs from aerosols. The project will use a range of representative North Atlantic subtropical and temperate aerosol and seawater samples and incorporate state of the art analytical and aerosol TM processing techniques to simulate dissolution processes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Call for proposal

FP7-PEOPLE-2012-CIG
See other projects for this call

Coordinator

UNIVERSITY OF PLYMOUTH
EU contribution
€ 100 000,00
Address
DRAKE CIRCUS
PL4 8AA Plymouth
United Kingdom

See on map

Region
South West (England) Devon Plymouth
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data
My booklet 0 0