Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Numerical Characterization and Modelling of Syngas Combustion

Objective

In order to meet the EU targets on renewable energy and greenhouse gas emissions, there is an urgent need to increase the use of renewable fuels such as syngas and biogas. In the mean time, the low efficiency and emission problems associated with non-premixed combustion systems are also driving the move away from such systems towards lean premixed conditions where fuel is mixed with excess air prior to combustion. Despite substantial progress achieved in turbulent combustion, there still lacks the understanding of the following four phenomena in the context of premixed mode: (i) development of flames (ii) influence of high-pressure on turbulent burning velocities, (iii) preferential diffusion effects which are most pronounced in mixtures that contain free hydrogen, and (iv) flame quenching by very intense turbulence is still poor.

The project is aimed at numerically characterizing the burning behaviour of premixed syngas and biogas combustion and developing large eddy simulation (LES) techniques to facilitate the study and design of practical combustion systems for such sustainable fuels. The main objectives are:

• To carry out numerical investigations of the aforementioned three important phenomena, i.e. (1) development of syngas premixed flames; (2) influence of high-pressure on turbulent burning velocities; and (3) preferential diffusion effects.
• To develop a turbulent reacting flow model that captures the underlying physical and chemical processes in flame development, the pressure and Lewis number effect; and to
• To validate the numerical model with published experimental data.

The project will result in a validated LES based predictive tool within the frame of open source CFD code OpenFOAM for multidimensional numerical simulations of syngas/biogas premixed flames under elevated pressures as well as a comprehensive database on the values of the time scale, computed for different mixture compositions, pressures, and temperatures.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITY OF WARWICK
EU contribution
€ 231 283,20
Address
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
United Kingdom

See on map

Region
West Midlands (England) West Midlands Coventry
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0