Objective
The most common traditional materials used in electrical energy distribution systems are copper and copper alloys. Modern applications show an increasing demand for better heat and electric current carrying capacity at the level beyond copper base materials. Nanocarbon materials, such as carbon nanotubes and graphene have attracted attention due to their high electrical, thermal conductivity and exceptional mechanical properties.
It would appear that combining copper with high performance nanocarbons towards composite materials could offer immediate solution to problems encountered currently. Copper nanocarbon composites could form the next generation of conductors, where copper contributes the benefits of electrical conductivity, whereas nanocarbon brings to this composite its low weight, flexibility, mechanical reinforcement and thermal management. Recent breakthrough in the chirality control of carbon nanotubes could contribute significantly to the electrical conductivity of these composite materials beyond the performance achieved by bulk copper conductors.
The material and process costs required to achieve improvement of the overall performance of copper based electrical conductors, need to be compatible with large scale conductor manufacturing and overcome the issues such as the cost of the nanocarbons and the difficulty of scaling up the production processes.
This proposal is aimed at developing a copper nanocarbon composite with significantly improved overall properties, including electrical, thermal and mechanical performances over bulk copper. The proposal also aims to develop production process that will be scalable to large volume manufacture. A key breakthrough will be the development/modification of the continuous carbon nanotube fibre process originating from Cambridge University for copper composite production, an inherently larger volume process for the production of carbon nanotube with high degree of structural control and molecular orientation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences electromagnetism and electronics
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- engineering and technology materials engineering composites
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-2013-NMP-ICT-FOF(RTD)
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.