Objective
The efficiency of traditional semiconductor solar cells is subject to a fundamental limitation, known as the Shockley-Queisser recombination limit, and is found to be near 30 per cent. The invention in the early eighties of solar cell rectifying antennas (rectennas) - a combination of an optical antenna and a rectifying diode to efficiently absorb the incident solar radiation and directly convert the ac field across the antenna into the dc power - provides a way to overcome the limitation. The recent rapid technological progress in the design of different nano-dimensional structures gives rise to a new promising possibility in designing nanorectennas. A solar cell will incorporate a large array of such elements, which provide high conversion efficiency and can be produced cheaply in a roll-to-roll process. However, a practical realization of such devices requires precise theoretical modelling and experimental study to provide optimization of the antenna and nanocontact configuration. The project focuses on the physics and theoretical modelling of the nanorectenna performance. The rectification effect comes from the photo-assisted charge carrier tunneling through the nanotube energy gap. For the efficiency enhancement we propose using the coherent effect of the photon dressing of electron-hole pairs. Theoretical modelling will be carried out on the basis of the Landauer- Büttiker formalism extended to the case of photon-dressed electrons. The fundamental thermodynamic limitation of the rectenna efficiency and the prospective applications of the device will be studied. This multidisciplinary and challenging project relies on the complementary expertise of the consortium teams and is based on an original approach - nanoelectromagnetics – combining the electrodynamics of mesoscopic inhomogeneous media and quantum transport theory of charge carriers in structures with reduced dimensionality.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering amorphous solids amorphous semiconductors
- natural sciences earth and related environmental sciences atmospheric sciences meteorology solar radiation
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-IRSES
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-IRSES - International research staff exchange scheme (IRSES)
Coordinator
EX4 4QJ Exeter
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.