Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Single cell level intravital imaging of response, tolerance, and resistance to targeted therapies

Objective

Oncogenic signalling by kinases presents a significant opportunity for cancer therapy. The B-Raf selective inhibitor, Vemurafenib, has shown great effect against B-Raf mutant melanoma patients. However, drug resistance emerges in nearly every case. Various mechanisms underlying this resistance are described, however these approaches usually overlook the heterogeneity of the tumour microenvironment, and do not provide information about the temporal aspects of drug response and eventual emergence of resistance. Therefore, uncovering the spatio-temporal heterogeneity, i.e. when, where, and how melanoma cells respond to drug and acquire resistance in a complex tumour microenvironment is the key step toward the comprehensive understanding of resistance mechanisms. To tackle these problems, we will investigate the tolerance and resistance to B-Raf inhibitors with single cell resolution in vivo. We have established melanoma cell lines stably expressing EKAR-EV biosensor that reports ERK activity in living cells. In vitro, the melanoma cells show homogenous responses to BRaf inhibitors, whereas intravital analysis indicate that there is considerable heterogeneity in ERK activity within tumours. This cannot be attributed simply B-Raf mutation as all cells contain the oncogene, and we hypothesize that additional signals from the microenvironment activate ERK, possibly putting the neighbouring melanoma cells in drug-tolerant state. Similar mechanisms are possible at metastatic locations. The tumour microenvironment of CNS metastases is quite different from those of other organs, it is particularly enriched in RTK ligands. In the longer term, we will study how metastatic melanoma cells may respond to and tolerate the drugs in the CNS. In summary we aim to identify the micro-environmental signals that activate ERK, and explore how these signals may confer tolerant to BRaf inhibition and ultimately aid the emergence of drug resistant clones.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

THE FRANCIS CRICK INSTITUTE LIMITED
EU contribution
€ 231 283,20
Address
1 MIDLAND ROAD
NW1 1AT London
United Kingdom

See on map

Region
London Inner London — West Camden and City of London
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0