Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Sensing and integration of signals governing cell polarity and tropism in fungi

Objective

Cell polarity and directed growth (tropism) are fundamental biological processes. Most fungi are dependent on these processes because they grow as polarised filaments called hyphae, whose growth and developmentare governed by physical and chemical cues from the environment. Such cues include surface-contact, light, nutrients, mating partners, host organisms, or ‘self’ hyphae from within the fungal colony. The capacity to re-orient hyphal tip growth in response to external signals forms the basis of the saprotropic, symbiotic and parasitic lifestyles of fungi. For example, dimorphic transitions and directed hyphal growth are intimately associated with virulence in fungal pathogens. The cellular components that control these morphogenic decisions therefore play key roles in fungal adaptation to environmental change and the invasion stages of infectious growth.
Extensive background work has led to the emerging concept of a “fungal brain”, which integrates exogenous and endogenous signals to determine the shape and direction of hyphae, both at the levels of the individual cell and of the fungal colony. However, in spite of the universal importance of these processes, surprisingly little is known about their genetic and cellular bases. FUNGIBRAIN brings together pioneering expertise from fungal model organisms such as baker’s yeast, fission yeast and the filamentous yeast Ashbya gossypii, and world-class teams working on filamentous fungi, including important human or plant pathogens (Aspergillus fumigatus, Candida albicans, Fusarium oxysporum and Ustilago maydis). The project integrates genetic, biochemical, biophysical, cell biology and systems biology approaches to define common patterns of signal integration and hyphal tropism. Early evidence suggests that these cellular targets are conserved across a broad range of fungal species and thus will have direct and important applications in antifungal treatments and biotechnology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-ITN
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ITN - Networks for Initial Training (ITN)

Coordinator

THE UNIVERSITY OF MANCHESTER
EU contribution
€ 789 758,85
Address
OXFORD ROAD
M13 9PL Manchester
United Kingdom

See on map

Region
North West (England) Greater Manchester Manchester
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (11)

My booklet 0 0