Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

BATTERIES2020: TOWARDS REALISTIC EUROPEAN COMPETITIVE AUTOMOTIVE BATTERIES

Objective

A lifetime of 4000 cycles at 80 % DOD and an energy density of 250 Wh/kg is a target for automotive batteries. The Batteries2020 project takes several steps to increase lifetime and energy density of large format lithium ion batteries towards these goals. Our approach is based on three parallel strategies: 1) highly focused materials development; 2) understanding ageing and degradation phenomena; and, 3) routes to reduce battery cost.
We will improve cathode materials based on nickel/manganese/cobalt (NMC) oxides. Such materials have a high chance to be up-scaled and commercialized near-term. Only then, cell development efforts can be translated from pilot to mass production, a prerequisite for qualification in the automotive industry.
We will start with state of the art cells and will develop two improved generations of NMC materials and cells towards high performance, high stability and cycleability.
A deep understanding of ageing phenomena and degradation mechanisms can help to identify critical parameters that affect lifetime battery performance. This identification helps effectively improving materials, system and the development of materials selection criteria. However, ageing and degradation mechanisms have multiple reasons and are complex. We propose a realistic approach with a combined and well organised Consortium effort towards the development of robust testing methodology which will be improved in several steps. Combined accelerated, real tests, real field data, post-mortem, modelling and validation will provide a thorough understanding of ageing and degradation processes.
Battery cost is a major barrier to EV market. Second life uses can reduce battery costs. We will analyse the potentiality of reusing and recycling batteries for providing economic viable project outputs.
Our consortium combines a wide range of expertise from materials development and battery production to lifetime characterisation and viability and sustainability of the chosen appro

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-2013-GC-Materials
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

IKERLAN S. COOP
EU contribution
€ 1 298 470,00
Address
P JOSE MARIA ARIZMENDIARRIETA 2
20500 MONDRAGON
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0