Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Unconventional Principles <br/>of ThermoElectric Generation

Objective

The performance of thermoelectric generation has long since been limited by the fact that it depends on hardly tunable intrinsic materials properties. At the heart of this problem lies a trade-off between sufficient Seebeck coefficient, good electrical properties and suitably low thermal conductivity. The two last being closely related by the ambivalent role of electrons in the conduction of both electrical and thermal currents. Current research focuses on materials composition and structural properties in order to improve this trade-off also known as the figure of merit (zT). Recently, evidences aroused that nanoscale structuration (nanowires, quantum dots, thin-films) can improve zT by means of electron and/or phonon confinement. The aim of this project is to tackle the intrinsic reasons for this low efficiency and bring TE conversion to efficiencies above 10% by exploring two unconventional and complementary approaches:
Phononic Engineering Conversion consists of modulating thermal properties by means of a periodic, precisely designed, arrangement of inclusions on a length scale that compares to phonon means free path. This process is unlocked by state of the art lithography techniques. In its principles, phononic engineering offers an opportunity to tailor the phonon density of states as well as to artificially introduce thermal anisotropy in a semiconductor membrane. Suitable converter architecture is proposed that takes advantage of conductivity reduction and anisotropy to guide and converter heat flow. This approach is fully compatible with standard silicon technologies and is potentially applicable to conformable converters.
The Micro Thermionic Conversion relies on low work function materials and micron scale vacuum gaps to collect a thermally activated current across a virtually zero heat conduction device. This approach, though more risky, envisions devices with equivalent zT around 10 which is far above what can be expected from solid state conversion.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

JUNIA
EU contribution
€ 1 499 506,80
Address
2 RUE NORBERT SEGARD
59046 Lille Cedex
France

See on map

Region
Hauts-de-France Nord-Pas de Calais Nord
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0