Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Accelerated development and prototyping of nano-technology-based high-efficiency thin-film silicon solar modules

Objective

In recent years, the effort in thin-film silicon (TFSi) was made at solving industrialization issues. In 2010, several companies demonstrated 10% stable modules (> 1 m²). The major “bricks” for efficient production are now in place. Next challenges are linked to the fact that TFSi multi-junction devices, allowing for higher efficiency, are complex devices, in which the substrate geometry and each layer have an impact on the full device. This explains why the first industrializations focused on “single technology” roads (e.g. Jülich-AMAT or EPFL-Oerlikon approaches).

This project focuses at bringing the next-generation technology to the market, using newly developed state-of-the art knowledge to solve the complex puzzle of achieving at the same time strong light in-coupling (high current) and good electrical properties (open-circuit voltage and fill factor). In a unique collaborative effort of the leading EU industries and research institutions in the field, the consortium will go beyond the current technology status by
• Introducing novel materials, including multi-phase nanomaterials (such as doped nc-SiOx, high crystallinity nc-Si materials), stable top cell materials, nanoimprinted substrates and novel or adapted transparent conductive oxides;
• Designing and implementing ideal device structures, taking into account the full interaction of layers in multi-junction devices;
• Controlling the growth of active layers on textured materials;
• Working at processes that could allow a further extension of the technology such as very high rate nc-Si deposition or multi-step superstrate etching;
• Transferring processes, including static and dynamic plasma deposition, from the laboratory to pilot scale, with first trials in production lines.

The targets of the project is to achieve solar cells with 14% stable efficiency, leading to the demonstration of reliable production size prototypes module at 12% level. Potential cost below 0.5€/Wp should be demonstrated.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-ENERGY-2011
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

FORSCHUNGSZENTRUM JULICH GMBH
EU contribution
€ 1 243 992,19
Address
WILHELM JOHNEN STRASSE
52428 JULICH
Germany

See on map

Region
Nordrhein-Westfalen Köln Düren
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (24)

My booklet 0 0