Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Interfacing quantum states in carbon nanotube devices

Objective

Coherent control and sensitive detection of quantum states in condensed matter are among the most topical challenges of modern physics. They drive the development of novel materials, theoretical concepts, and experimental methods to advance our understanding of fundamental laws of quantum mechanics and to create transformative technologies for future applications. During the past decades carbon has emerged as a new material platform to address these challenges: graphene and carbon nanotubes have been created as paradigm systems with exceptional physical properties.

As atomically-thin cylinders carbon nanotubes combine ultra-low mass with extreme mechanical stiffness. This identifies them as perfect candidates for the realization of ultra-high quality mechanical resonators with applications in quantum metrology and sensing. Their crystalline lattice can be made free of nuclear spins by material engineering to ensure ultra-long electron spin coherence times for quantum information processing and coherent spintronics. In addition, semiconducting single-wall carbon nanotubes exhibit optical resonances with unprecedented tunability in color for quantum communication and cryptography. These outstanding material properties form the basis for our scientific research proposal.

Our vision is to realize up-conversion schemes interfacing light with spin, mechanical, and spin-mechanical degrees of freedom in carbon nanotube devices. In particular, we will study spin dynamics in carbon nanotubes with an isotopically engineered nuclear spin lattice and we will suspend individual carbon nanotubes in high-fidelity optical micro-cavities to detect and control mechanical motion down to the quantum ground state. Ultimately, our devices will realize entirely novel regimes of quantum states by hybridizing light with magnetic or mechanical excitations and explore the foundations of emerging technologies at the quantum limit.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
EU contribution
€ 1 739 680,00
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0