Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Three ideas in open Gromov-Witten theory

Objective

The questions motivating symplectic geometry, from classical mechanics to enumerative algebraic geometry, have been studied for centuries. Many recent advances in the field have stemmed from the theory of J-holomorphic curves, and in particular Gromov-Witten theory. The past 25 years of research have produced a fairly detailed picture of what can be expected from classical, closed Gromov-Witten theory. However, closed Gromov-Witten theory by itself lacks an interface with Lagrangian submanifolds, one of the fundamental structures of symplectic geometry. The nascent open Gromov-Witten theory, in which Lagrangian submanifolds enter as boundary conditions for J-holomorphic curves, provides such an interface.
The goal of the proposed research is to broaden and systematize our understanding of open Gromov-Witten theory. My strategy leverages three connections with more established fields of research to uncover new aspects of open Gromov-Witten theory. In return, open Gromov-Witten theory advances the connected fields and reveals links between them. First, the closed and open Gromov-Witten theories are intertwined. Representation theoretic structures in closed Gromov-Witten theory admit mixed open closed extensions. Further, real algebraic geometry gives rise to a large variety of Lagrangian submanifolds providing an important source of intuition for open Gromov Witten theory. In return, open Gromov-Witten theory techniques advance Welschinger's real enumerative geometry. Finally, open Gromov-Witten theory plays a key role in mirror symmetry, a conjectural correspondence between symplectic and complex geometry originating from string theory. In particular, open Gromov-Witten invariants appear in the construction of mirror geometries. Moreover, under mirror symmetry, Lagrangian submanifolds correspond roughly to holomorphic vector bundles. Well understood functionals associated to holomorphic vector bundles go over to open Gromov-Witten invariants.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
EU contribution
€ 1 249 000,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0