Objective
Inspired by biological systems, artificial composite materials nowadays may be micro-tailored with a hierarchical structure, or may be produced with sculptured chiral structures, or with stabilized negative-stiffness inclusions. The result is that these new materials can achieve surprisingly excellent mechanical properties.
The technological application of these new high-performance composite materials is limited by fracture nucleation and propagation at nano and micro scales. In fact it is very difficult to simultaneously achieve high values of strength and toughness, for which ordinarily there is a trade-off. The aim of this project is the development of new models of fracture mechanics for innovative composite materials, bridging together the different length-scales and thus overcoming the main limitations of linear fracture mechanics (LEFM). In fact, since LEFM is a scale-free theory, it is unable to characterize materials with microstructure and to describe size-effects at small scales.
The goal will be achieved by a novel multiscale approach to fracture mechanics combining continuum and discrete modelling. In particular, at the microscale the heterogeneous microstructure of the composite material will be described as a continuum micropolar medium incorporating appropriate length-scales, thus capable of capturing size-effects. At the nanoscale the discrete structure of the material will be described in terms of lattice models in order to understand the mechanism of dissipation and the properties of waves generated by propagating cracks. The continuum and discrete modelling will be combined through the concept of structural interface, where a discrete structure representing the interface of finite thickness is embedded in a continuum body.
These models will have an impact on the design of new artificial composite materials which combine high strength with uncompromised toughness properties.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
38122 TRENTO
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.