Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Information-optimal machine learning

Objective

The statistical and computational theory of learning is one of the prime achievements of computer science and engineering. This is evident both in terms of mathematical elegance of capturing intuitive notions rigorously as well as in terms of practical applicability: machine learning has effectively reshaped the way we use information.
In this proposal we tackle the very basic notions of learning. Learning theory traditional focuses on statistics and computation. We propose to add information to the characterization of learning: namely the research question we address is: how much information is necessary to learn a certain concept efficiently?
The crucial difference from classical learning theory is that traditionally statistical complexity was measured in terms of the number of examples needed to learn a concept. Our question is more finely grained: what if we are allowed to inspect only parts of a given example? Can we reduce the amount of information necessary to successfully learn important concepts? This question is fundamental in understanding learning in general and designing efficient learning algorithms in particular. We show how recent advancements in convex optimization for machine learning yields positive answers to some of the above questions: there exists cases in which much more efficient algorithms exist for learning practically important concepts. Our goal is to characterize learning from the viewpoint of the amount of information necessary to learn, to design new algorithms that access less information than current state-of-the-art and are consequently significantly more efficient. New answers for these fundamental questions will be a breakthrough in our understanding of learning at large with significant potential for impact on the field of machine learning and its applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
EU contribution
€ 1 453 802,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0