Objective
Hydrogen produced by sunlight is a very promising, environmentally-friendly energy source as an alternative for increasingly scarce and polluting fossil fuels. Since the discovery of hydrogen production by photocatalytic water dissociation on a titanium dioxide (TiO2) electrode 40 years ago, much research has been aimed at increasing the process efficiency. Remarkably, insights into how water is bound to the catalyst and into the dynamics of the photodissociation reaction, have been scarce up to now, due to the lack of suitable techniques to interrogate water at the interface. The aim of this proposal is to provide these insights by looking at specifically the molecules at the interface, before, during and after their photo-reaction. With the surface sensitive spectroscopic technique sum-frequency generation (SFG) we can determine binding motifs of the ~monolayer of water at the interface, quantify the heterogeneity of the water molecules at the interface and follow changes in water molecular structure and dynamics at the interface during the reaction. The structure of interfacial water will be studied using steady-state SFG; the dynamics of the water photodissociation will be investigated using pump-SFG probe spectroscopy. At variable delay times after the pump pulse the probe pulses will interrogate the interface and detect the reaction intermediates and products. Thanks to recent developments of SFG it should now be possible to determine the structure of water at the TiO2 interface and to unravel the dynamics of the photodissocation process. These insights will allow us to relate the interfacial TiO2-water structure and dynamics to reactivity of the photocatalyst, and to bridge the gap between the fundamentals of the process at the molecular level to the efficiency of the photocatalys. The results will be essential for developing cheaper and more efficient photocatalysts for the production of hydrogen.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences catalysis photocatalysis
- natural sciences chemical sciences inorganic chemistry transition metals
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
1010 WIEN
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.
Participation ended
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.