Objective
During mitosis the genetic material of the mother cell is separated and distributed between two daughter cells. Responsible for this coordinated segregation is an assembly of polymers, molecular motors and adapter proteins– the mitotic spindle. This super-molecular machine moves the chromosome halves in opposite directions over impressive cellular scales (tens of µm) within a relatively short time (minutes). The regulatory biochemical pathways responsible for timing and error-control of mitosis have been extensively studied and the key factors have been identified. The major mechanical determinants are thought to be a combination of polymerization dynamics and molecular motor activity but what remains elusive is how such individual processes lead to directed movement in a large cytoskeletal assembly, and how active force generation is balanced to prevent structural collapse. Understanding the mechanical properties responsible for pulling chromosomes is at the heart of spindle function, which is critical to the life cycle of a cell. This knowledge is pivotal in developing biomedical applications. Here, I propose to investigate the mechanical basis leading to directed movement of chromosomes during segregation and how mechanical load is distributed in the spindle throughout mitosis. I plan to unravel the molecular nature of force leading to nuclear migration following segregation, an essential process in large egg cells. The experimental foundation for my studies is a recently developed cell-free assay using the genetically tractable Drosophila, providing complete accessibility to every mitotic event with time-lapse imaging and mechanical manipulation. This project lies at the interdisciplinary interface between mechanical engineering, microscopy, biochemistry and fly genetics. The basic concepts for the planned experiments are speckle microscopy, spatial constraining, mechanical relaxation and compression in combination with genetic and pharmaceutical perturbation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences optics microscopy
- engineering and technology mechanical engineering
- natural sciences biological sciences genetics chromosomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
1067-001 LISBOA
Portugal
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.