Objective
The functionalized Cahn-Hilliard energy is a phase-field characterization of an interfacial energy used
to describe dynamics of amphiphilic network formation. We have
successfully applied the functionalized Cahn-Hilliard energy to model the morphology of water nano-pore networks in ionomer membranes. The resulting morphology model was validated with experimental scattering data of Nafion, an
ionomer membrane which is a critical component in fuel cells.
It is natural to use, as a basis, the successful morphology model to study the effect of morphology
on membrane performance, e.g. conductivity. The functionalized Cahn-Hilliard energy offers, however, only a phenomenological treatment of the electrostatic
forces between the polymer and the water. Such a treatment effectively blocks important extensions of the model.
The main goal of this proposal is the development, analysis, and simulation of continuum models which characterize amphiphilic network formation coupled to ion transport. Attaining this goal requires redeveloping key components of the functionalized Cahn-Hilliard model while operating on a wide range of scales, e.g. from the non-uniform water structure in a pore at the nanoscale to membrane conductivity at the macroscale.
A key application of this proposal is to study conductivity and selectivity of ionomer membranes and their dependence upon morphology and ionic concentrations.
The project is of clear interdisciplinary nature, merging problems, ideas and tools from Mathematics, material science, solution chemistry and soft matter physics. The design and performance of novel clean energy devices such as fuel cells, flow batteries, or organic solar cells critically depends on the optimized coupling between material nanostructure, electrostatics, charge transport and nanoflows. Any progress in the directions proposed above will open the way to robust phase-field models which can incorporate and couple these four effects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences electrochemistry electric batteries
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences chemical sciences polymer sciences
- natural sciences mathematics
- engineering and technology environmental engineering energy and fuels fuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.