Objective
With this ERC project I want to induce a paradigm shift in the development of integrated nonlinear optical devices. Nonlinear optics, the scientific discipline in which nonlinear light-matter interactions are studied, has been a very active area of research ever since the invention of the laser in 1960. Although this scientific branch has great application potential when implemented in on-chip optical waveguides, its promise for the development of widely usable integrated optical devices has not yet been fulfilled. The state-of-the-art of integrated nonlinear optical devices indeed does not comply with the requirements for widespread deployment as these devices rely on non-standard waveguide designs, large on-chip foot prints and/or impractical pump lasers.
Therefore, I propose in this project to eliminate the issues of the state-of-the-art devices by introducing novel material and device physics. More specifically, my goal is to exploit extreme, but practically unexplored, nonlinear optical properties of graphene-covered silicon waveguides to develop next-generation near-infrared-pumped nonlinear supercontinuum light sources. These will truly be “next-generation” sources as they will rely on standard waveguide design, ultra-compact foot prints and practical near-infrared pump lasers, while exhibiting unprecedented performances. The concrete objectives of my project are to theoretically study, model, fabricate and experimentally demonstrate three novel graphene-on-silicon-based nonlinear optical devices that rely on three different nonlinear optical effects, and the on-chip cascading of these novel devices to create the targeted “next-generation” near-infrared-pumped supercontinuum sources with up to four emission bands. Based on my theoretical and experimental research experience with nonlinearities in waveguides and my preliminary modeling results supporting the feasibility of these objectives, I believe that, with this ERC starting grant, I will be able to carry out this original “high-gain/high-risk” project. By doing so, I will introduce a paradigm shift in the development of integrated nonlinear optical devices enabling them to fulfill their long-awaited promise, and at the same time initiate a new era in the research on graphene and its nonlinear optical applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences optics nonlinear optics
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
1050 BRUSSEL
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.