Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

The ecology and population dynamics of Wolbachia infections in Aedes aegypti and the development of new strategies for mosquito-borne disease control

Objective

An exciting new strategy for biocontrol of mosquito-borne diseases involves the endosymbiotic bacteria Wolbachia that infect several insect species. In the mosquito Aedes aegypti, the major vector of the dengue virus, infection with Wolbachia has been shown to greatly reduce the transmission of human pathogens including the dengue, yellow fever and chikungunya viruses. The Eliminate Dengue project, an international collaboration, is currently developing strategies for releasing Wolbachia into wild A. aegypti populations to render them incapable of transmitting these viruses. The operational success of this strategy relies on the rapid spread of Wolbachia through the mosquito vector population following their initial release. However, the spread of Wolbachia depends on two main factors. Firstly, Wolbachia incur a fitness cost on A. aegypti, which can prevent the bacteria from spreading, particularly if there is a strong fitness cost. In order to design release strategies that will achieve spread, we need to understand the fitness effects of Wolbachia on A. aegypti and how changing environmental conditions influences these effects. Secondly, Wolbachia needs to achieve a threshold prevalence in the mosquito population before it can spread which depends on the fitness cost caused by the bacteria. We need to understand the dynamics of Wolbachia infection in the mosquito population in order to predict release strategies that will allow a sufficiently high prevalence of Wolbachia to be maintained. This fellowship aims to advance our understanding of these ‘individual-level’ and ‘population-level’ processes that determine Wolbachia spread in A. aegypti in order to assist the design of Wolbachia release strategies to successfully drive Wolbachia through wild mosquito populations. An interdisciplinary investigation will develop a new data-driven mathematical modelling approach to predict Wolbachia dynamics under realistic conditions of environmental variability.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 376 536,20
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0