Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Bio-Inspired Routes for Controlling the Structure and Properties of Materials: Reusing proven tricks on new materials

Objective

"In the course of biomineralization, organisms produce a large variety of functional biogenic crystals that exhibit fascinating mechanical, optical, magnetic and other characteristics. More specifically, when living organisms grow crystals they can effectively control polymorph selection as well as the crystal morphology, shape, and even atomic structure. Materials existing in nature have extraordinary and specific functions, yet the materials employed in nature are quite different from those engineers would select.
I propose to emulate specific strategies used by organisms in forming structural biogenic crystals, and to apply these strategies biomimetically so as to form new structural materials with new properties and characteristics. This bio-inspired approach will involve the adoption of three specific biological strategies. We believe that this procedure will open up new ways to control the structure and properties of smart materials.
The three bio-inspired strategies that we will utilize are:
(i) to control the short-range order of amorphous materials, making it possible to predetermine the polymorph obtained when they transform from the amorphous to the succeeding crystalline phase;
(ii) to control the morphology of single crystals of various functional materials so that they can have intricate and curved surfaces and yet maintain their single-crystal nature;
(iii) to entrap organic molecules into single crystals of functional materials so as to tailor and manipulate their electronic structure.
The proposed research has significant potential for opening up new routes for the formation of novel functional materials. Specifically, it will make it possible for us
(1) to produce single, intricately shaped crystals without the need to etch, drill or polish;
(2) to control the short-range order of amorphous materials and hence the polymorph of the successive crystalline phase;
(3) to tune the band gap of semiconductors via incorporation of tailored bio-molecules."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
EU contribution
€ 1 500 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0