Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Novel roles, components, and mechanisms of the Escherichia coli CRISPR/Cas system

Objective

A novel type of defense system was recently identified in bacteria: the CRISPR array and its associated gene products (Cas). The system inserts short DNA sequences, called spacers, derived from foreign nucleic acid molecules in between direct repeats, thus forming the CRISPR array. The transcribed spacers eventually serve as molecular guides for Cas proteins that monitor and destroy nucleic acids having sequences similar to those spacers. Thorough mapping of the functional components and regulators of the system in a single model organism will be extremely valuable for understanding its mechanism of action. Studying the interactions between bacteria and phages should highlight the evolutionary role of the system and its consequences for shaping ecological systems. These insights will lead to novel ways of exploiting the system to improve molecular biology tools, to protect fermenting bacteria from phage spoilage, to equip phages with anti-CRISPR warfare to fight bacteria, and to prevent horizontal gene transfer between pathogens. Here, I intend to systematically seek out new roles of the system and to identify fundamental mechanisms and components that allow the system to function efficiently. I will address fundamental questions such as how the system avoids sampling self DNA into the CRISPR array. In addition, I will pursue two revolutionary possibilities. One, that the CRISPR/Cas system is not merely an adaptive defense system against phages, but that one of its roles is to serve as molecular machinery for silencing specific harmful genes by generating small silencing RNAs without the need for Cas proteins. The other is to test the system’s ability to prevent horizontal gene transfer of antibiotic resistance genes in an effort to study the system’s ecological value, potentially for applicative uses. My proposed studies will allow deeper understanding of the system, and enable breakthroughs from both basic and applicative aspects of the CRISPR field studies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TEL AVIV UNIVERSITY
EU contribution
€ 1 499 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0