Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Optofluidic toolkit for characterizing single-cell dynamics in systems immunology

Objective

Immune cells constantly receive signalling inputs such as pathogen-emitted molecules, use gene regulatory pathways to process these signals, and generate outputs by secreting signalling molecules like cytokines. Characterizing the input-output relationship of a biological system helps understanding its regulatory mechanisms, and allows building models to predict how the system will operate in complex physiological scenarios, such as population tissue response to infection. A major obstacle in this endeavor has been the so-called “biological noise”, or significant variability in measured molecular parameters between cells. Such variability makes time-dependent single-cell analysis crucial to understand how biological systems operate. Development of new analytical tools with improved functionality, accuracy, and throughput is needed to realize the full potential of single-cell analysis. We propose to develop automated, high-throughput, Optofluidic single-cell analysis systems with unprecedented capabilities, and to use them in understanding how immune cells organize in tissue during response to infection. Microfluidic membrane-valves, nanodroplets, optics, and automation will be integrated to achieve an unparalleled degree of control over single immune cells. Multi-functional lab-on-chip devices will simultaneously measure: a) The activity of immune regulatory proteins such as NF-κB, and b) Inflammatory cytokines secreted from single immune cells in a time-dependent manner, under precisely defined biochemical inputs. Characterizing macrophage cytokine secretion dynamics under combinatorial regiments of bacterial and apoptotic-cell signals will allow dissecting the signalling mechanism responsible from the resolution of inflammation. We will identify the role of the NF-κB pathway in regulation of cytokine dynamics. We will use our data to develop a computer model of tissue-level immune response to pathogens through the NF-κB pathway and cytokine signaling.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
EU contribution
€ 1 499 165,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0