Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Advanced T-cell Engineered for Cancer Therapy

Objective

"T-cell engineering strategies for Cancer therapy, either Chimeric Antigen Receptors (CARs) or TCR transfer holds promise to revolutionize cancer treatment. There are, however, considerable barriers to be overcome to take this form of therapy to a format that can benefit all EU citizens with a wide range of common cancers. The aim of this consortium is to exploit advances in T-cell engineering to allow the full potential of CAR therapy to be unleashed.
At present, CAR therapy requires a bespoke autologous therapeutic product for each patient. This greatly limits practicality, scalability and commercialisation. The development of a strategy for creation of universal engineered T-cells is the first key aim of this consortium. There is an increased appreciation of the immunological hostilities (CAR) T-cells face in the tumour microenvironment, and prevention of this local immune suppressive effect will likely be critical in permitting effective tumour control. The second main aim of this proposal is therefore to engineer CAR T-cells to be resistant to the hostile microenvironment. CAR T-cells can only be effective if they can access the tumour site. Exploiting the fact that neo-angiogenesis is a hallmark of neoplastic progression, the third aim of the consortium is to utilise endothelial cues of neo-angiogenesis to direct CAR T-cell migration and activity.
The central technological theme of this consortium is the application of TALEN-mediated gene editing strategies alongside genetic modification with integrating vectors. Using this approach, we will implement a clinical study of “universal” CAR T-cells in refractory lymphoma. Further, this work will be complemented with highly focused development of T-cells which are resistant to hostile microenvironments and which can home to sites of neovascularization. The legacy this consortium wishes is commercialization of universal CAR therapy for a broad swathe of human cancers."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-HEALTH-2013-INNOVATION-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

UNIVERSITY COLLEGE LONDON
EU contribution
€ 2 646 887,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (5)

My booklet 0 0