Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Modeling and controlling traffic congestion and propagation in large-scale urban multimodal networks

Objective

As cities grow rapidly and more people through different modes compete for limited urban road infrastructure to travel, it is important to manage traffic space to improve accessibility for travelers. This project tackles the problem of modeling and optimization in large-scale congested traffic networks with an aggregated realistic representation of dynamics and route choice and multiple modes of transport. This is a highly motivating problem both because of the socio-economic influence of congestion and the challenges embedded in the optimization framework and the modeling aspects. Currently most optimization methods for transport networks (i) are suited for toy networks with simplified dynamics that are far from real-sized networks, (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks, (iii) investigate engineering solutions through micro-simulation models and scenario analysis that make the problem intractable in real time, (iv) are not considering interactions and conflicts between transport modes (car, bus, delivery vehicle). This problem is even more challenging if one considers that transportation networks have a hierarchical structure with freeways and urban roads with mixed or separated traffic (e.g. bus-only lanes), that have dissimilar traffic flow dynamics. Lack of coordination among the jurisdictions during traffic operations or limited means of traffic data monitoring and communication can impede such mixed traffic network ideal goal. Traditionally, choices of people in transportation networks are based on equilibrium conditions with small variations.The huge amount of datasets (including thousands of GPS data from taxis, cars and buses and road detector data from heavily populated cities worldwide) can provide a unique way to understand how really people make choices, how these choices affect the development and spreading of congestion in networks and integrate them in the macroscopic dynamics and optimization

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EU contribution
€ 1 242 162,00
Address
BATIMENT CE 3316 STATION 1
1015 Lausanne
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0