Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nano Engineering for Cross Tolerance: new approach for bioengineered, vascularised, chimeric islet transplantation in non-immunosuppressed hosts

Objective

Diabetes is caused by insufficient or lack of insulin secretion by the specialized B cells of the pancreas and, if not treated adequately evolves into in complications which alter patients integrity and wellness. Treatment is based on lifetime drugs administration for blood glucose control or parenteral infusion of insulin to better control glucose levels and glycosylation of hemoglobin. Artificial pancreases are in development but still dependent by external energy sources and need permanent transcutaneous access to release the hormone. Pancreatic whole organ transplantation is a major intervention requiring selected recipient and matched cadaveric donor which keep numbers down. Islet of Langerhans transplantation is a non-invasive method for the treatment of type 1 diabetes but several questions remain and several issues have to be addressed in order to improve the method since islet engraftment is clearly suboptimal, as a result of pro-apoptotic and pro-inflammatory stimuli sustained during islet isolation and at the site of implantation, the long-term islet graft function drops to 15% with time, and the current systemic immunosuppressive regimen has several drawbacks in terms of side effects. Solution should be find to increase transplantation efficiency with an higher number of islet, eventually from animals, induce tolerance toward the graft, avoiding systemic, lifetime immunosuppression and, lowering a specific inflammatory reaction and enhancing graft micro vasculogenesis to improve islet nesting. NEXT provides a 360° solution to the pitfalls of current methodology for pancreatic islet transplantation: i) Nano technologies, to engineer donor cell surfaces in order to derange recognition and suppress their rejection; ii) Advanced tissue engineering methods, to assemble bio synthetic islet, enriched by chimeric microvasculature; iii) Innovative double immune-suppressive strategy by graft - bound immunosuppressive nano peptides and shielded by self- vasculature

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-HEALTH-2013-INNOVATION-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

UNIVERSITY OF BRIGHTON
EU contribution
€ 670 581,20
Address
LEWES ROAD MITHRAS HOUSE
BN2 4AT Brighton
United Kingdom

See on map

Region
South East (England) Surrey, East and West Sussex Brighton and Hove
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (5)

My booklet 0 0