Objective
A renewed interest in Ge has been sparked by the prospects of exploiting its lower effective mass and higher hole mobility to improve the performance of transistors. Ge emerges also as a promising material in the field of spin qubits, as its coherence times are expected to be very long. Finally, it has been proposed that strained Ge nanowires show an unusually large spin orbit interaction, making them thus suitable for the realization of Majorana fermions. In view of these facts, one is able to envision a new era of Ge in information technology.
The growth of Ge nanocrystals on Si was reported for the first time in 1990. This created great expectations that such structures could provide a valid route towards innovative, scalable and CMOS-compatible nanodevices. Two decades later the PI was able to realize the first devices based on such structures. His results show that Ge self-assembled quantum dots display a unique combination of electronic properties, i.e. low hyperfine interaction, strong and tunable spin-orbit coupling and spin selective tunneling. In 2012, the PI’s group went a step further and realized for the first time Ge nanowires monolithically integrated on Si substrates, which will allow the PI to move towards double quantum dots and Majorana fermions. In view of their exceptionally small cross section, these Ge wires hold promise for the realization of hole systems with exotic properties.
Within this project, these new wires will be investigated, both as spin as well as topological qubits. The objective of the present proposal is mainly to: a) study spin-injection by means of normal and superconducting contacts, b) study the characteristic time scales for spin dynamics and move towards electrical spin manipulation of holes, c) observe Majorana fermions in a p-type system. The PI’s vision is to couple spin and topological qubits in one “technological platform” enabling thus the coherent transfer of quantum information between them.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics fermions
- engineering and technology nanotechnology nano-materials nanocrystals
- natural sciences physical sciences electromagnetism and electronics spintronics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.