Objective
Two-pore domain potassium channels (K2P) maintain the resting membrane potential of animal cells and therefore play a central role in the control of cellular excitability. In the vertebrate nervous system, various neuromodulators promote K2P closure, which depolarizes neurons, increases neuronal excitability and ultimately affects action potential firing. Knockout studies have revealed important roles of K2Ps in physiopathological processes tied to cellular excitability. K2Ps are major targets of volatile anaesthetics. Analysis of task1/3 knockouts established a direct role of these channels in anaesthetics-induced immobilization and sedation. trek1 knockout mice are hypersensitive to kainate-induced seizures and display depression-resistant phenotypes, similar to naive mice treated with selective serotonine reuptake inhibitors. In sensory neurons, genetic ablation of trek1 or inhibition by noxious stimuli (heat, external acidosis) leads to increased neuronal activity and pain perception.
Despite the fundamental functions of these channels, comparatively little is known about the cellular processes that control K2P function. I propose to use comprehensive and powerful genetic screening strategies in the nematode C. elegans to identify novel genes and conserved cellular processes that regulate the biology of K2Ps in a native context. I will decipher the precise functions of novel K2P regulators by using the full array of techniques available in C. elegans including genetics, live imaging, electrophysiology and state-of-the-art genome engineering and deep sequencing. This will provide new leads to understand the cellular pathways that control K2P function in other organisms.
This work may have wide-ranging applications since K2Ps are increasingly implicated in a variety of physiopathological processes in the nervous system but also in cardiac muscle, endocrine and immune system. However, the precise molecular factors involved are mostly unknown.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- natural sciences chemical sciences inorganic chemistry alkali metals
- natural sciences biological sciences cell biology
- medical and health sciences basic medicine immunology
- medical and health sciences clinical medicine anaesthesiology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
69622 Villeurbanne Cedex
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.