Objective
Maximising energy efficiency and competitiveness while minimising waste and environmental impact of chemical processes, from large scale commodities to fine chemicals and pharmaceuticals, depends crucially on catalysis, and in particular on our ability to tailor catalysts to specific needs. Gold catalysts have seen a meteoric rise in recent years (nearly 40,000 WOS citations in 2011). However, since gold was so long considered inert, major compound classes are unknown. For example, we recently synthesized the first thermally stable gold(III) hydrides, gold peroxides (the first for gold in any oxidation state) and gold(III) alkene complexes (while platinum analogues of the latter have been known since 1827). Based on >20 years of pioneering research into the identification of catalytically active species and homogeneous catalytic reaction mechanisms, our ground-breaking results will form the basis of an ambitious programme on gold chemistry to delineate the structures and reactivities of these major classes of complexes. Ligand design will be of crucial importance to achieve the stability required for catalytic and synthetic applications. We have also found unprecedented reactivity that links these complexes to the water splitting cycle and hydrogen generation. Structure-reactivity relationships and mechanisms will be established that provide the knowledge base for general applicability. The outcomes will underpin synthetic methodology for fine chemicals and pharmaceuticals and impact on the materials and medicinal applications of gold complexes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- medical and health sciencesbasic medicinepharmacology and pharmacypharmaceutical drugs
- natural scienceschemical scienceselectrochemistryelectrolysis
- natural scienceschemical sciencesinorganic chemistrytransition metals
- natural scienceschemical sciencescatalysis
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energyhydrogen energy
You need to log in or register to use this function
Call for proposal
ERC-2013-ADG
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
NR4 7TJ Norwich
United Kingdom