Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Metal transport in the tripartite symbiosis arbuscular mycorrhizal fungi-legume-rhizobia

Objective

Plant nutrition is essential to understand any physiological process in plant biology, as well as to improve crops, and agricultural practices. The root microbiome plays an important role in plant nutrition. The best characterized microbiome elements are two plant endosymbionts: arbuscular mycorrhizal fungi (AMF) and rhizobia. AMF are responsible for delivering most of the mineral nutrients required by the host plant. Similarly, rhizobia in legume nodules provide the vast majority of the nitrogen requirements. Given their importance for plant nutrition a significant effort in understanding macronutrient exchange among the symbionts has been made. However, very little is known about metal micronutrient exchange.
This is in contrast to the role of metals as essential nutrients for life (30-50 % of the proteins are metalloproteins) and to the yield-limiting effect that low soil metal bioavailability has worldwide. AMF are a source of metals, transferring the incorporated metals to the host,. Nitrogen-fixing rhizobia in mature nodules act as metal sinks, since the main enzymes required are highly expressed metalloproteins. We hypothesize that by changing the expression levels of the metal transporters involved, we will increase nitrogen fixation rates and increase plant metal uptake, resulting in higher crop production and fruit metal biofortification. Towards this goal, we will answer: i) How are metals incorporated from the AMF into the plant?, ii) How are metals delivered to the nodule?, iii) How are metals recovered from senescent nodules?, and iv) How does the natural variation of symbiotic-specific metal transporters affect yields and metal content of the fruit? In this project, we will use a multidisciplinary approach that involves metallotranscriptomics, plant physiology and molecular biology, and state-of-the art synchrotron based X-ray fluorescence to study metal distributions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSIDAD POLITECNICA DE MADRID
EU contribution
€ 1 499 404,80
Address
CALLE RAMIRO DE MAEZTU 7 EDIFICIO RECTORADO
28040 Madrid
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0