Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Principles of Protein Group Modification by the SUMO Pathway

Objective

Posttranslational modification (PTM) of proteins by ubiquitin family proteins is of fundamental importance for cellular function, regulation and development. Ubiquitylation typically targets individual proteins, and high selectivity is achieved by a plethora of ubiquitin-conjugating enzymes and ligases. Much less is known regarding how modification by the ubiquitin-related protein SUMO influences the function of substrates and how specificity is provided. Surprisingly, although SUMOylation affects roughly 10% of all yeast proteins, only very few enzymes participate in the pathway. Moreover, although SUMOylation is essential for viability, mutants defective in SUMOylation of individual substrates usually lack deleterious phenotypes. We recently solved this puzzle as we found that SUMOylation frequently targets protein groups (“protein group modification”) rather than individual substrates; single modifications are often redundant or additive as SUMO functions as intermolecular “glue”, thereby stabilizing protein complexes. Hence, the traditional view that a single PTM on a given protein mediates a specific function does not seem to apply for many SUMO modifications.
Entirely divergent from previous approaches we will thus focus for the first time specifically on protein group SUMOylation and its special requirements for specificity, induction and termination. Initially found for proteins of homologous recombination and nucleotide excision DNA repair, we will expand the concept of protein group SUMOylation with a focus on pathways relevant for cellular regulation and which are of medical importance. We will define the substrate repertoire of SUMO ligases, characterize their substrate targeting properties, and design novel tools aimed to address the function of protein group SUMOylation. We expect that our work will finally put studies of this important modifier on a solid basis and will break new ground in areas of cellular regulation and cell biology in general.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-ADG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 1 403 060,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0