Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nonequilibrium phenomena at femtosecond/nanometer scale

Objective

Nanoscale objects like magnetic molecules and clusters, quantum dots, and graphene, bring us novel physical concepts. Recently, the temporal scale of the order of tens of femtoseconds (femtoscale) became available and new physical phenomena associated with this time scale, such as laser-induced electron and magnetic phase transitions, were discovered. The theoretical background for understanding this new physics is still rather poor. This temporal scale, like the spatial nanoscale is intermediate between micro- and macroworld making the standard approaches developed in micro- and macrophysics not suitable anymore. Essentially new theoretical ideas and methods are necessary for its description, especially in a combination with the spatial nanoscale. The aim of this project is to provide such a background via detailed studies of key problems, and open the way for new practical applications.

Based on a combination of analytical and computational theoretical approaches (most of them were suggested by us), we plan to study systematically time-dependent many-body phenomena at the femto/nano scale. We will develop a theory of nonequilibrium magnetic interactions and spin dynamics of nanosystems and apply it to molecular magnets and clusters at metal surfaces and at graphene. We will study the physics of graphene and “artificial graphene” (array of semiconducting quantum dots) in strongly time-dependent electric fields (laser-induced ultrafast dynamics).

This list covers the crucial problems in this new field (nonequilibrium spin dynamics, calculation of response functions crucial for pump-probe experiments, new physics in highly excited graphene and graphene-like systems) and the success of the project will represent a breakthrough in our understanding of the nanoworld, with very important perspectives for applications, namely, for the drastic miniaturization of basic elements and enhancing speed of basic operations in electronics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-ADG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

STICHTING RADBOUD UNIVERSITEIT
EU contribution
€ 1 637 630,00
Address
HOUTLAAN 4
6525 XZ Nijmegen
Netherlands

See on map

Region
Oost-Nederland Gelderland Arnhem/Nijmegen
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0