Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Engineering DNA transfer into Cells by Precision in Electroporation

Objective

The proposal aims to understand and control the transport of DNA in electroporation process at the molecular/subcellular level such that more efficient and safer non-viral gene delivery can be achieved. The introduction of naked DNA into living cell via non-viral routes is the safest approach in gene therapy. Electroporation is the electrical disruption of biological membranes to introduce naked DNA into the cell. Due to our lack of information about fundamentals of electropores formation and DNA electrotransfer, electroporation methods still suffer from low transfection efficiency, random uptake and excessive cell damage.
The main barriers to achieving this goal are: i) understanding the creation of electropores at molecular level; ii) understanding the underlying mechanism of DNA transport across the membrane of a cell during and after electric pulses and iii) controlling the electrotransfer of DNA through these pores into a cell at molecular level. It is almost impossible to overcome these barriers based on our current rudimentary understanding of cell electroporation.
The successful outcome of this project will significantly aid the development of gene delivery into living cells, which will lead to electroporation-based therapies in the near future.To this end, I will apply a multidisciplinary approach, combining disciplines as physical chemistry, transport phenomena, DNA dynamics, biophysics and cell biology. To unveil the entire electroporation process, innovatively I will employ the integrated atomic force microscopy with micro/nanofluidics to visualize the evolution of pore size/density at the membrane level. Furthermore, to understand the DNA electrotransfer, I will study how DNA interacts with electropores and moves through them using optical tweezers and single-molecule FRET. Finally, I will dissect the role of cytoskeleton on the transport of DNA, by mapping out the relationship between the viscoelasticity of cell and location of DNA inside the cell.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITEIT DELFT
EU contribution
€ 1 481 409,60
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0